Sir3p domains involved in the initiation of telomeric silencing in Saccharomyces cerevisiae.

نویسندگان

  • Y Park
  • J Hanish
  • A J Lustig
چکیده

Previous studies from our laboratory have demonstrated that tethering of Sir3p at the subtelomeric/telomeric junction restores silencing in strains containing Rap1-17p, a mutant protein unable to recruit Sir3p. This tethered silencing assay serves as a model system for the early events that follow recruitment of silencing factors, a process we term initiation. A series of LexA fusion proteins in-frame with various Sir3p fragments were constructed and tested for their ability to support tethered silencing. Interestingly, a region comprising only the C-terminal 144 amino acids, termed the C-terminal domain (CTD), is both necessary and sufficient for restoration of silencing. Curiously, the LexA-Sir3(N205) mutant protein overcomes the requirement for the CTD, possibly by unmasking a cryptic initiation site. A second domain spanning amino acids 481-835, termed the nonessential for initiation domain (NID), is dispensable for the Sir3p function in initiation, but is required for the recruitment of the Sir4p C terminus. In addition, in the absence of the N-terminal 481 amino acids, the NID negatively influences CTD activity. This suggests the presence of a third region, consisting of the N-terminal half (1-481) of Sir3p, termed the positive regulatory domain (PRD), which is required to initiate silencing in the presence of the NID. These data suggest that the CTD "active" site is under both positive and negative control mediated by multiple Sir3p domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Initiation of Ageing Process by Meiotic and Mitotic Recombination within the Ribosomal DNA Genes in Saccharomyces cerevisiae

In the budding yeast of Saccharomyces cerevisiae the tandem repeated of rDNA genes are located onchromosome XII, which is in the nucleolus. There are different types of proteins in the nucleoluskeleton,silencing proteins have got important role in nucleolus.It is shown that meiotic recombination between nonsister chromatids in the rDNA genes are stronglysuppressed, and s...

متن کامل

Two classes of sir3 mutants enhance the sir1 mutant mating defect and abolish telomeric silencing in Saccharomyces cerevisiae.

Silent information regulators, or Sir proteins, play distinct roles in chromatin-mediated transcriptional control at the silent mating-type loci, telomeres, and within the rDNA repeats of Saccharomyces cerevisiae. An unusual collection of sir3 mutant alleles was identified in a genetic screen for enhancers of the sir1 mutant mating-defective phenotype. These sir3-eso mutants, like the sir1 muta...

متن کامل

A novel role for histone chaperones CAF-1 and Rtt106p in heterochromatin silencing.

The histone chaperones CAF-1 and Rtt106p are required for heterochromatin silencing in the yeast Saccharomyces cerevisiae. Although it has been suggested that CAF-1 is involved in the maintenance of heterochromatin silencing, their exact functions during this process are not well understood. Here, we show that CAF-1 and Rtt106p are involved in the early stages of heterochromatin formation. The ...

متن کامل

Two paralogs involved in transcriptional silencing that antagonistically control yeast life span

In the yeast Saccharomyces cerevisiae, one determinant of aging or life span is the accumulation of extrachromosomal copies of rDNA circles in old mother cells [1]. The production of rDNA circles depends upon intrachromosomal recombination within the rDNA tandem array, a process regulated by the protein Sir2 (Sir2p). Together with Sir1p, Sir3p, Sir4p and Orc1p, Sir2p is also involved in transcr...

متن کامل

Analysis of Sir2p domains required for rDNA and telomeric silencing in Saccharomyces cerevisiae.

Silent information regulator (Sir) 2 is a limiting component of the Sir2/3/4 complex, which represses transcription at subtelomeric and HM loci. Sir2p also acts independently of Sir3p and Sir4p to influence chromatin organization in the rDNA locus. Deleted and mutated forms of Sir2p have been tested for their ability to complement and/or to disrupt silencing. The highly conserved C-terminal dom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 150 3  شماره 

صفحات  -

تاریخ انتشار 1998